

Tarefas letivas à distância Ano letivo 2019/20

(16 de março a 20 de março)

Matemática

Turmas 6° A, 6° B e 6°C

Prof. Carla Cruz e Oriana Borges

Tarefas:

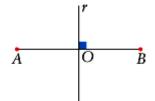
- Leitura do resumo sobre as Isometrias
- Realização das fichas n.º 1, 2, 3, 4 e 5.
- Leitura do resumo sobre as Expressões Numéricas.
- Realização das fichas n.º 6

Bom trabalho!

- Sempre que tiverem dúvidas, não hesitem em apresentá-las, nos grupos-turma de watsup – turmas 6ºA e 6ºC - e classdojo – turma B.
- Deverão, posteriormente, enviar as resoluções das várias tarefas da seguinte forma:
 - o 6ºA e 6ºC, para o watsup
 - o 6ºB, via portefólio do classdojo.

Resumo

Isometrias do plano


Mediatriz de um segmento de reta

Já sabes que, sobre um segmento de reta [AB] há um único ponto equidistante* de A e de B

* à mesma distância.

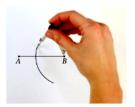
O ponto médio, M, desse segmento.

A mediatriz de um segmento de reta é a reta perpendicular a esse segmento e que passa no seu ponto médio.

Repara que:

Qualquer ponto que esteja à mesma distância das extremidades de um segmento de reta pertence à mediatriz desse segmento de reta.

Reciprocamente:



Qualquer ponto da mediatriz de um segmento de reta está à mesma distância das respetivas extremidades.

Construção da mediatriz de um segmento de reta:

1.° passo:

Com centro numa extremidade do segmento de reta [AB] e com uma abertura maior do que metade do comprimento do segmento, desenha um arco como ilustrado na figura.

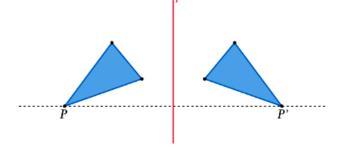
2.° passo:

Com centro na outra extremidade e com a mesma abertura, desenha outro arco que intersete o arco desenhado anteriormente.

3.° passo:

Traça a reta que passa nos pontos de interseção dos dois arcos. Essa reta é a mediatriz do segmento de reta [AB] e interseta-o no seu ponto médio.

Propriedades da mediatriz de um segmento de reta


- Os ângulos BOP e POA são ambos retos pois a reta r é perpendicular ao segmento [AB];
- 2. AO = OB, pois O é o ponto médio de [AB];
- O segmento de reta [OP] é um lado comum aos dois triângulos [BOP] e
 [POA]
- A O B
- r é a mediatriz de [AB].
- 4. Pelo critério LAL, os triângulos [POA] e [BOP] são geometricamente iguais. Como [PA] e [PB] são lados que se opõem a ângulos iguais em triângulos iguais $\overline{PA} = \overline{PB}$, logo o ponto P está à mesma distância dos extremos do segmento [AB].

Reflexão Axial

Repara que se dobrasses a folha segundo a reta r o triângulo da esquerda iria coincidir com o triângulo da direita ponto por ponto. O ponto P iria coincidir com o ponto P'.

Neste caso, o ponto P´ é a imagem do ponto P por reflexão em relação a reta r.

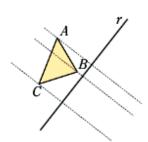
A reta r dá-se o nome de eixo de reflexão.

Dada uma reta r:

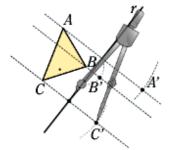
- a imagem de um ponto P não pertencente à reta r pela reflexão axial de eixo r é o ponto P', tal que a reta r é a mediatriz do segmento [PP'].
- a imagem de um ponto da reta r pela reflexão axial de eixo r é o próprio ponto.

Propriedades da reflexão Axial

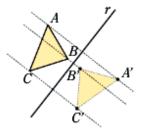
As reflexões axiais mantêm as distâncias entre os pontos. Um segmento de reta é transformado num segmento de reta com o mesmo comprimento.



As reflexões axiais mantêm as amplitudes dos ângulos.



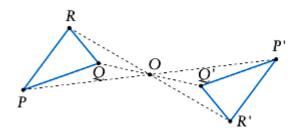
As reflexões axiais transformam figuras em figuras geometricamente iguais.


Construção de figuras por reflexão axial

Traçam-se retas perpendiculares à reta r passando pelos vértices da figura original, com o auxílio do esquadro e da régua.

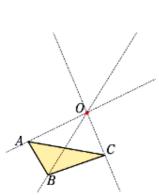
Marcam-se, usando o compasso, as imagens de cada um dos vértices, à mesma distância da reta r.

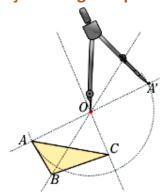
Unem-se, usando a régua, os pontos marcados e obtém-se a imagem da figura pela reflexão de eixo r.


Reflexão Central

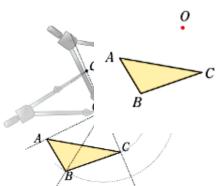
A reflexão central de centro O transforma um ponto P (diferente de O) no ponto P' tal que:

- os pontos P, O e P' são colineares, ou seja, pertencem à mesma reta;
- os pontos P e P' estão à mesma distância do ponto O, ou seja, O é o ponto médio do segmento de reta [PP'].
 A imagem do ponto O é o próprio ponto.


Propriedades da reflexão central


- 1. Os ângulos internos em O são verticalmente opostos, logos iguais.
- 2. Os pontos P e P'estão à mesma distância de O, logo $\overline{OP} = \overline{OP'}$
- 3. Os pontos Q e Q'estão à mesma distância de O, logo OQ = OQ'
- 4. Os triângulos [PQR] e [P'Q'R'] são iguais pelo critério LLL.

Então: O comprimento dos segmentos de reta [PQ] e [P´Q´] é igual, pois são lados opostos a ângulos iguais, em triângulos geometricamente iguais.


Construção de figuras por reflexão central

Traçam-se, usando a régua, as retas AO, BO e CO.

Na reta AO, marca-se, usando o compasso, o ponto A', distinto de A, à mesma distância de O que A.

Na reta BO, marca-se, usando o compasso, o ponto B', distinto de B, à mesma distância de O que B. Faz-se o mesmo em CO, determinando o ponto C', distinto de C, à mesma distância de O que C.

Rotação

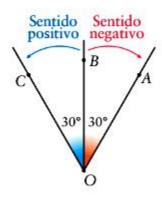
À nossa volta podemos observar muitas situações em que detetamos movimentos de rotação.

Repara que é possível fazer os triângulos coincidirem ponto por ponto. Ao rodares o triângulo azul à volta de um ponto fixo, num

determinado sentido e segundo um determinado ângulo.

Para definir uma rotação é necessário:

- o centro de rotação;
- o ângulo de rotação (amplitude e sentido).

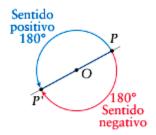


Uma rotação de centro O e ângulo α transforma um ponto P (diferente de O) num ponto P' tal que:

- $\overline{OP} = \overline{OP'}$
- $P\hat{O}P' = \hat{\alpha}$

A imagem do ponto O é o próprio ponto.

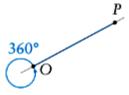
O sentido da rotação de um ângulo pode ser positivo ou negativo

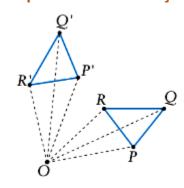


O sentido positivo é contrário ao sentido do movimento dos ponteiros de um relógio. O sentido negativo é o mesmo do movimento dos ponteiros de um relógio.

Rotação de ângulo raso:

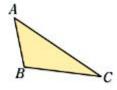
O ponto P'é a única imagem de P pela rotação de centro O e amplitude 180°.

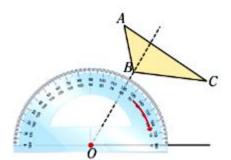

Diz-se que P´ é a imagem de P por "meia volta em torno de O".


O

Rotação de ângulo nulo ou giro:

O ponto P é a única imagem de P pela **rotação de centro O e ângulo giro**.

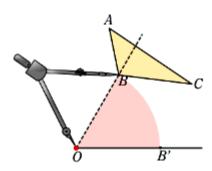

Propriedades da rotação

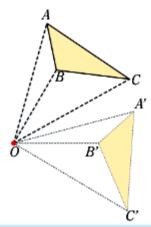


- 1. Os ângulos $P\hat{O}R = P'\hat{O}R'$, isto é, um ângulo é transformado num ângulo com a mesma amplitude.
- 2. Os pontos P e P'estão à mesma distância de O, logo $\overline{OP} = \overline{OP'}$
- 3. Os pontos Q e Q'estão à mesma distância de O, logo $\overline{OQ} = \overline{OQ}'$
- 4. Os pontos R e R'estão à mesma distância de O, logo $\overline{OR} = \overline{OR'}$
- 5. Os triângulos [PQR] e [P´Q´R´] são iguais pelo critério LLL.

Construção de figuras por rotação

Para encontrar a imagem do triângulo [ABC] pela rotação de centro O **e amplitude 60º no sentido negativo**, deves fazer a seguinte construção:




ô

Considerou o triângulo [ABC] e o ponto O.

Ligou o ponto O ao ponto B. Usando o transferidor com centro em O, marcou 60° no sentido negativo a partir de O, traçando uma nova semirreta.

Abriu o compasso com o comprimento de [OB] e traçou um arco de circunferência com centro em O até intersetar a nova semirreta, obtendo assim o ponto B'. B' é a imagem de B pela rotação de centro O e amplitude 60°, no sentido negativo.

Usou o mesmo processo para os pontos A e C. Unindo os pontos A', B' e C' obteve um triângulo que é a imagem do triângulo [ABC] pela rotação de centro O e amplitude 60°, no sentido negativo.

Simetrias

Nesta secção vais aprender dois tipos de simetrias:

- simetria de reflexão;
- simetria de rotação;

Simetria de reflexão

Diz-se que a figura tem simetria de reflexão quando existe pelo menos uma reta que a divide em duas partes que se podem sobrepor ponto por ponto por dobragem.

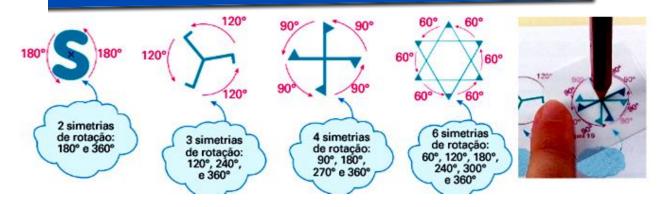
Uma reta r é um eixo de simetria de uma figura quando as imagens dos pontos da figura pela reflexão de eixo r formam a mesma figura.

Uma figura pode ter uma ou mais simetrias de reflexão ou não ter nenhuma simetria de reflexão.

Simetria de rotação

Este sinal não se altera se rodamos 120° (360 : 3 simetrias = 120) em torno do seu centro, ou seja, esta figura é invariante por uma rotação de ângulo não nulo e não giro.

Dizemos que tem simetria de rotação.


Esta figura, para além de se manter invariante por uma rotação de centro

O e amplitude de 120° , também se mantém invariante por rotações de centro O e amplitudes de 240° (120 + 120) e 360° (240 + 120)

120°

Uma figura tem simetria de rotação quando existe uma rotação de ângulo não nulo e não giro tal que as imagens dos pontos dessa figura por rotação formam a mesma figura.

Simetrias reflexão nos polígonos regulares

Triângulo isósceles	Retângulo	Triângulo equilátero
Um eixo de simetria Uma simetria de reflexão	Dois eixos de simetria Duas simetrias de reflexão	Três eixos de simetria Três simetrias de reflexão
Quadrado	Hexágono regular	Círculo
Quatro eixos de simetria Quatro simetrias de reflexão	Seis eixos de simetria Seis simetrias de reflexão	Infinidade de eixos de simetria Infinidade de sime- trias de reflexão

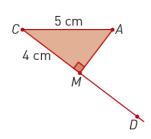
Simetrias rotação nos polígonos regulares

and the second of the second o						
Polígono regular	120°	90°	72°			
Número de lados	3	4	5	6		
Número de simetrias	3	4	5	6		
Amplitudes de rotação	120°, 240° e 360°	90°, 180°, 270° e 360°	72°, 144°, 216°, 288° e 360°	60°, 120°, 180°, 240°, 300° e 360°		

Nome ______ Turma _____ Nº ____ Data ___ / ___ / ____

Considera um segmento de reta [AB].

É possível afirmar que M é o ponto médio do segmento de reta [AB] quando:

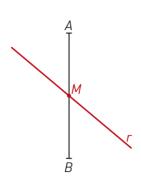

(A)
$$\overline{AM} = \overline{MB}$$

(B)
$$\overline{AM} = \overline{MB} \in M \in [AB]$$

(C)
$$\overline{AM} = \frac{\overline{AB}}{2}$$

(D)
$$\overline{BM} = \frac{\overline{AB}}{2}$$

Na figura M é o ponto médio do segmento de reta [CD].O ponto A pertence à mediatriz de [CD].



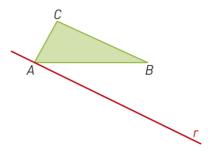
- 2.1. Qual é a medida de [AD]?
- 2.2. Mostra que os triângulos [ACM] e [AMD] são iguais.
- 2.3. Determina o perímetro do triângulo [ACD] ?
- O ponto *M* é o ponto médio do segmento de reta [*AB*] e a reta r passa por esse ponto *M*.

Justifica a seguinte afirmação.

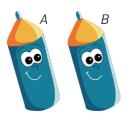
"A reta r pode ser a mediatriz do segmento de reta [AB]."

O Pedro, o Nuno e o Miguel foram para a rua brincar.

Desenha os locais onde pode estar o Pedro de modo a ficar à mesma distância do Nuno e do Miguel.


***	REPÚBLICA PORTUGUESA
	FDUCAÇÃO

Na figura seguinte está representado o triângulo [ABC] e a reta r.


- **1.1.** Constrói o triângulo [A'B'C'], transformado do triângulo [ABC], na reflexão axial de eixo r.
- 1.2. Justifica que os triângulos [ABC] e [A'B'C'] são iguais.
- A figura representa um relógio e uma reta r que passa pelo centro do relógio e pelos pontos correspondentes à 1:00 e às 7:00. Os ponteiros do relógio indicam que são 8:00.

 Que horas ficarão marcadas ao fazer uma reflexão dos ponteiros relativamente à reta r?

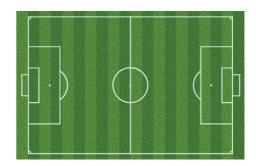


A figura B não é obtida por uma reflexão axial da figura A.

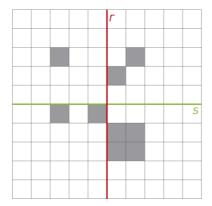
Justifica porquê.

Oesenha a figura transformada da figura dada pela reflexão da reta d.

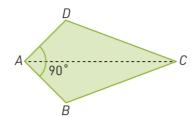
*	REPÚBLICA PORTUGUESA
	FDUCAÇÃO



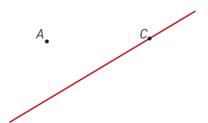
Nome	Turma	NΩ	Data	/	/
Nonic	Turma		Data /	′ /	



Observa a figura ao lado que representa um campo de futebol.


Traça os eixos de simetria da figura.

Pinta o menor número de quadrículas de modo que os eixos r e s sejam eixos de simetria da figura.

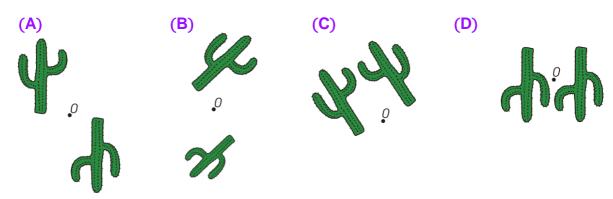


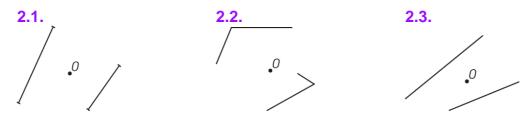
No quadrilátero [ABCD], a linha a tracejado representa um eixo de simetria.

Quanto mede, em graus, o ângulo DAC?

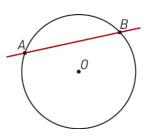
 $oldsymbol{4}$ Na figura pode observar-se a representação de uma reta $\,r\,$ e os pontos $\,A\,$ e $\,$ $\,C.$

Assinala os pontos A' e C', transformados de A e C pela reflexão de eixo r.

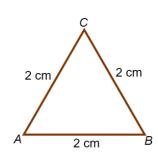

#	REPÚBLICA PORTUGUESA
_	raucucia


Nome ______ Turma _____ Nº ____ Data ___ / ___ / ____

Em qual das figuras a imagem da direita foi obtida a partir da imagem da esquerda por uma reflexão central de centro O?



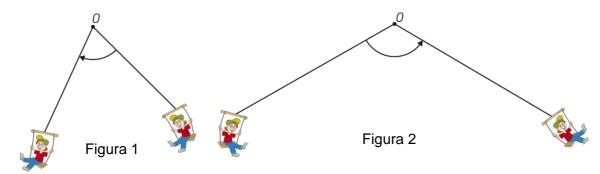
Justifica porque é que as figuras da esquerda não podem ser as transformadas das da direita por uma reflexão de centro O.


Na figura está representada uma circunferência de centro O e a reta AB, sendo A e B dois pontos da circunferência.

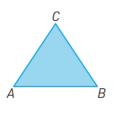
Sejam A' e B' imagens dos pontos A e B, respetivamente, pela reflexão central de centro O.

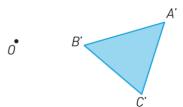
- 3.1. Assinala na figura A' e B'.
- 3.2. Qual a posição das semirretas AB e A'B'?
- 3.3. Justifica que os triângulos [AB'O] e [A'BO] são iguais.
- O triângulo da figura é equilátero e tem 2 cm de lado.

 Desenha e classifica quanto aos lados o triângulo [A'B'C'], transformado do triângulo [ABC] pela reflexão central de centro B.


*	REPÚBLICA PORTUGUESA
	EDUCAÇÃO

Nome	Turma	Nº	Data	/	/
------	-------	----	------	---	---

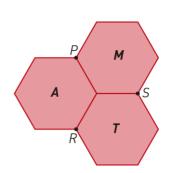

1 Nas figuras seguintes estão representadas duas rotações de centro O.

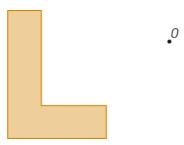


Determina, em graus, o ângulo de rotação em cada uma das figuras.

Na figura pode ver-se o triângulo
[A'B'C'], transformado do triângulo
[ABC] por uma rotação de centro O.

Qual é a medida da amplitude do
ângulo de rotação? Mostra como
chegaste à tua resposta.




Na figura ao lado estão representados três hexágonos regulares *M*, *A* e *T* .

O hexágono $\,M\,$ pode ser obtido do hexágono $\,A\,$ por duas rotações.

Indica o centro e o ângulo de cada rotação.

Desenha a imagem transformada da figura a seguir apresentada por uma rotação de centro O e amplitude de 60° no sentido positivo.

REPÚBLICA PORTUGUESA

EDUCAÇÃO
AGRUPAMENTO DE ESCOLAS PATRÍCIO PRAZER

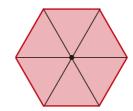
Nome Data __ Turma

Observa a rosácea representada na figura.

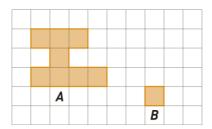
90°

- 1.1. Quantas simetrias de rotação tem esta rosácea?
- 1.2. Assinala com X qual das opções não pode corresponder à amplitude de um ângulo de simetria de rotação da rosácea com centro de rotação no ponto O.

80°


2.1. Qual é a amplitude do ângulo de rotação que transforma o setor Zero no setor Jackpot? Considera o sentido positivo da rotação.

Na figura está representada uma roda da sorte.


2.2. O ponteiro está no setor 75. Ao rodar a roda, no sentido negativo, 150°, qual é o valor que vai ser sorteado?

Descreve as simetrias de rotação do polígono regular representado ao lado.

Observa a figura.

Junta o elemento B ao elemento A de modo que a figura resultante tenha simetrias de rotação.

Resumo

Número e Operações

Resolução de Expressões Numéricas

- 1. Se a expressão tiver potências, damos prioridade ao cálculo do valor das potências.
- 2. Os cálculos indicados entre parêntesis efetuam-se em primeiro lugar;
- 3. O cálculo dos produtos (x) e dos quocientes (÷) têm prioridades sobre o cálculo das somas (+) e das diferenças (-).
- 4. Os produtos (x) e os quocientes (÷) calculam-se pela ordem que aparecem, da esquerda para a direita.
- 5. As somas e as diferenças calculam-se pela ordem que aparecem, da esquerda para a direita.
- 6. Nas somas e diferenças os denominadores têm que ser iguais (só nas somas e diferenças).

Exemplos

1.	$10 \times (4^2 - 18:3) =$	Damos prioridade ao cálculo do valor da potência $4^2 = 4 \times 4 = 16$
	10 × (16 – 18:3) =	Resolve-se o que está dentro dos parêntesis: em primeiro lugar
		efetua-se a divisão 18: 3 = 6
	10 × (16 – 6) =	e só depois a subtracção 16 – 6 = 10
	10 × 10 = 100	
2.	$6 + (4 + 3)^2 =$	Resolve-se o que está dentro dos parêntesis, ou seja para
	$6 + 7^2 =$	determinar o valor da potência temos de determinar a base que é a
		soma de 4 com 3
	6 + 49 = 55	Damos prioridade ao cálculo do valor das potências: $7^2 = 49$

3.
$$10^5 \times 0 + 10^3 \times 1 =$$

Como zero é o elemento absorvente da multiplicação, o produto de qualquer número por zero é zero, então não necessitamos calcular o valor de 10 elevado a 5, 10^5 porque $10^5 \times 0$ é zero.

$$0 + 10^3 \times 1 =$$

Como 1 é o elemento neutro da multiplicação, $10^{3} \times 1 = 10^{3}$

$$0 + 10^3 =$$

Como zero é o elemento neutro da adição, a soma de qualquer número com zero é o próprio número

$$10^3 = 1000$$

4.
$$4 + 10^5 : 10^3 - 4^2 \times 4 =$$
 Efetuam-se as multiplicações e divisões, em primeiro lugar, pela ordem em que aparecem (da esquerda para a direita)

$$4 + 10^{5-3} - 4^{2+1} =$$

$$4 + 10^2 - 4^3 =$$

$$4 + 100 - 64 =$$

$$104 - 64 = 40$$

2) Calcula o valor numérico das expressões

$$10^2 - 4^2 \times 4 =$$

Deve dar-se prioridade ao calculo do valor das potências, sem alterar a ordem dos termos

$$10^2 - 4^{2+1} =$$

 $10^2 - 4^3 =$

Para facilitar o cálculo da potência aplicamos a regra da multiplicação de potências com a mesma base (mantemos a

base e somamos os expoentes)

$$10 \times 10 - 4 \times 4 \times 4 =$$

Como nas subtrações não é possível aplicar as regras das potências, calculamos o valor das potências e efetuamos as

restantes operações, da esquerda para a direita

$$100 - 64 = 36$$

Ficha de Trabalho 6

Aluno: N.º Turma Data - -

Lê atentamente todas as questões e apresenta todos os cálculos que efetuares.

1. Calcula:

1.1
$$\left(\frac{3}{2}\right)^3$$

1.2
$$\frac{3^3}{2}$$

1.3
$$\frac{3}{2^3}$$

1.4
$$\left(\frac{2}{7}\right)^2$$

1.6
$$\left(1\frac{3}{5}\right)^2$$

2. Calcula usando regras de potências, sempre que possível.

Apresenta o resultado na forma de uma única potência.

2.1
$$6^9 \times 6^{11} \times 6^2$$

2.2
$$0.5^4 \times 2^4 \times 10^4$$

2.3
$$\left(\frac{1}{2}\right)^4 \times 0.5^2 \times \frac{1}{2}$$

2.4
$$\left(\frac{3}{5}\right)^7 \times \left(\frac{5}{3}\right)^7 \times 3^7$$

2.5
$$(5^2)^5$$

$$2.6 \quad \left[\left(\frac{1}{3} \right)^4 \right]^2$$

2.7
$$12^5 \times 4^5$$

2.8
$$\left(\frac{3}{9}\right)^{17} : \left(\frac{3}{9}\right)^{14}$$

2.10
$$\left(\frac{5}{9}\right)^3 : \left(\frac{1}{9}\right)^3$$

2.11
$$\left(\frac{3}{4}\right)^5 \times 4^5 : 3^2$$

2.12
$$\left(\frac{7}{2}\right)^{17}$$
: 3,5¹⁵ × 2²

 Calcula o valor das seguintes expressões numéricas (usa regras operatórias de potências, se possível).

Apresenta a resposta sob a forma de potência de expoente diferente de 1.

$$3.1. \qquad \left(\frac{1}{4}\right)^2 \times \frac{1}{4}$$

$$3.2. \qquad \left(\frac{1}{5}\right)^4 \times \left(\frac{5}{2}\right)^4$$

3.3.
$$\left(\frac{3}{2}\right)^2 \times \left(\frac{3}{2}\right)^2 : \frac{4}{9}$$

3.4.
$$\left(1 \frac{1}{3}\right)^8 \times \left(\frac{2}{3}\right)^8$$

$$3.5. \qquad \left(\frac{7}{2}\right)^5 \times \left(\frac{7}{2}\right)^5$$

3.6.
$$2^{2^3} \times \left[\left(\frac{1}{2} \right)^2 \right]^4$$

3.7.
$$\left(3 - \frac{3^2}{4}\right) \times \left(\frac{3}{4}\right)^7$$

3.8.
$$\frac{2 \times 2^3 \times 3^4}{2^4}$$

3.9.
$$\left(\frac{1}{3}\right)^2 : 3^2 : \left(\frac{1}{9}\right)^2 + \left(\frac{1}{5}\right)^3 \times 5^3$$

3.10.
$$\frac{2^3 \times \left(\frac{1}{3}\right)^3 : \left(\frac{2}{3}\right)^2}{\left(1 - \frac{1}{2}\right)^2}$$

3.11.
$$(2^2)^3 \times \left[\left(\frac{1}{2} \right)^3 \right]^2 : 3^{2^3}$$

3.12.
$$\frac{5 \times \left[\left(1 - \frac{1}{2}\right)^3 \times 3 \right]}{\left(\frac{1}{2} + 2\right)^2}$$

3.13
$$\left(\frac{1}{2}\right)^{12}$$
 : $0.5^{10} + \left(\frac{3}{2}\right)^2$: $\left(\frac{1}{2}\right)^2$

3.14
$$\left(\frac{5}{4}\right)^3 \times \left(\frac{5}{4}\right)^4 : \left(\frac{5}{4}\right)^5 + 1^{200}$$

3.15
$$(3^2)^4$$
: $\left(\frac{3}{2}\right)^8$: 2^7

3.16.
$$\left(\frac{1}{4}\right)^2 \times \frac{1}{4}$$

3.17.
$$\left(\frac{1}{5}\right)^4 \times \left(\frac{5}{2}\right)^4$$

3.18.
$$\left(\frac{3}{2}\right)^2 \times \left(\frac{3}{2}\right)^2 : \frac{4}{9}$$

3.19.
$$\left(1 \frac{1}{3}\right)^8 \times \left(\frac{2}{3}\right)^8$$

3.20.
$$\left(\frac{7}{2}\right)^5 \times \left(\frac{7}{2}\right)^5$$